On the Representation of a Function as a Hellinger Integral
نویسنده
چکیده
6. M. Riesz, Sur la sommation des séries de Dirichlet, C. R. Acad. Sci. Paris vol. 149 (1909) pp. 18-21. 7. -, Sur Véquivalence de certaines méthodes de sommation, Proc. London Math. Soc. (2) vol. 22 (1923-1924) pp. 412-419. 8. L. L. Silverman, On the definition of the sum of a divergent series. University of Missouri Studies, Mathematical Series, vol. 1, no. 1, 1913. 9. O. Toeplitz, Über allgemeine linear e Mittelbildungen, Prace Matematycznofizyczne vol. 22 (1911) pp. 113-119.
منابع مشابه
Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملMixed Strong Form Representation Particle Method for Solids and Structures
In this paper, a generalized particle system (GPS) method, a general method to describe multiple strong form representation based particle methods is described. Gradient, divergence, and Laplacian operators used in various strong form based particle method such as moving particle semi-implicit (MPS) method, smooth particle hydrodynamics (SPH), and peridynamics, can be described by the GPS metho...
متن کاملA remark on asymptotic enumeration of highest weights in tensor powers of a representation
We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...
متن کاملNumerical Solution of Second Kind Volterra and Fredholm Integral Equations Based on a Direct Method Via Triangular Functions
A numerical method for solving linear integral equations of the second kind is formulated. Based on a special representation of vector forms of triangular functions and the related operational matrix of integration, the integral equation reduces to a linear system of algebraic equations. Generation of this system needs no integration, so all calculations can easily be implemented. Numerical res...
متن کاملOn the numerical solution of integral equations of the fourth kind with higher index: differentiability and tractability index-3
In this paper, we consider a particular class of integral equations of the fourth kind and show that tractability and differentiability index of the given system are 3. Tractability and dierentiability index are introduced based on the-smoothing property of a Volterra integral operator and index reduction procedure, respectively. Using the notion of index, we give sucient conditions for the exi...
متن کامل